Meconium Ileus in Cystic Fibrosis

Valery Dronsky MD
Kings County Hospital Center
Department of Surgery
July 21, 2006
Case Presentation- HPI

- An xx hour old xx male was transferred from Lutheran Medical Center with diagnosis of intestinal obstruction, possible jejunal atresia to Kings County Hospital.
- CC: abdominal distension, vomiting and failure to pass meconium.
- Family Hx: maternal and paternal, Native American Indians with cystic fibrosis trait.
Case Presentation

- Vitals:
 - Temperature: 99
 - HR: 176
 - BP: 76/40
 - Resp: 57
 - Pulse Oximetry: 99%
Case Presentation-CBC

- WBC 3.76
- Hgb 14.8
- Hct 45.5
- Platelets 248
- Neut 7%
- Bands 13%
- Lymph 71%

Meconium Ileus
Case Presentation - Chemistry

- Na 133
- K 3.8
- Cl 107
- CO₂ 14
- BUN 8
- Cr 0.8
- Glucose 334
- Calcium 7.9
Meconium Ileus

Case Presentation - ABG

- pH 7.31
- pCO2 31.9
- pO2 112
- sO2 99.1%
- HCO 17.4
- BE -9.3
Case Presentation - Abdominal XR

High intestinal obstruction, possible pneumatosis and intraperitoneal free air. Worrisome for NEC.
Case Presentation - Abdominal XR

Meconium Ileus
Case Presentation - Barium Enema

High intestinal obstruction
Barium could only reached level of distal sigmoid colon
May represent obstruction due to plugs or atretic or stenotic segment

Meconium Ileus
Case Presentation - Barium Enema

High intestinal obstruction
Barium could only reached level of distal sigmoid colon
May represent obstruction due to plugs or atretic or stenotic segment
Case Presentation- OR

- Procedure: laparotomy with lysis of adhesion, resection of segments of jejunum and ileum, jejeunostomy, with mucous fistula of ileum
- Findings: Jejunal atresia, inspissated meconium in the distal ileum with in utero volvulus of ileum with perforation
Case Presentation

- Postoperative diagnosis
 - Jejeunal atresia and meconium ileus with volvulus and perforation
 - Etiology: cystic fibrosis

- Intra-operative cultures:
 - E.Coli, heavy growth
Case Presentation- Post op Course

- Course complicated by
 - enterococcus fecalis sepsis
 - Broviac catheter sepsis

- Appropriate antibiotic therapy instituted

- Nutritional support: TPN
Case Presentation – Post op Course

- Blood Culture 7/12/06: negative
- Clinical status improved; pt is pre-op to restore bowel continuity
Meconium Ileus in Cystic Fibrosis

Valery Dronsky MD
Kings County Hospital Center
Department of Surgery
Cystic Fibrosis
Habitus

Meconium Ileus
Cystic Fibrosis - Introduction

- Inherited monogenic disorder presenting as a multisystem disease.
- Typically presents in childhood
 - only 7% of CF patients diagnosed as adults
- Most common life limiting recessive trait among whites
CF-Introduction

- **Term coined 1938**- “cystic fibrosis of the pancreas”

- **Symptoms of classical CF:**
 - Meconium ileus - obstruction of bowel in newborn 20%
 - Chronic lung infections and inflammation 90% of patients
 - Pancreatic insufficiency 85% of patients
 - Increased electrolyte level in sweat
 - Diabetes Mellitus
 - Liver cirrhosis
 - CBAVD-congenital bilateral aplasia of the vas deferens in 95% of males
Cystic Fibrosis - Prognosis

- Prognosis improving
 - >38% of CF patients are older than 18
 - 13% of CF patients are older than 30

- Median survival
 - Males: 32 years
 - Females: 29 years
Average Life Expectancy in Cystic Fibrosis
Better Treatment—Improved Survival?
CF-Primary Causes of Death

- Cardio-respiratory: 78.8%
- Transplant Complication: 12.0%
- Liver Disease: 1.6%
- Suicide: 0.7%
- Unreported Causes/Other: 6.9%

Genetics of CF

- Autosomal recessive
- Gene located on chromosome 7
- Prevalence- varies with ethnic origin
 - 1 in 3000 live births in Caucasians in North America and Northern Europe
 - 1 in 17,000 live births of African Americans
 - 1 in 90,000 live births in Hawaiian Asians

Cystic Fibrosis Foundation. Facts about Cystic Fibrosis. 2003 May
Chance of Being a CF Carrier by Ethnic Background

<table>
<thead>
<tr>
<th>Ethnic group</th>
<th>Affected child</th>
<th>Carrier rate</th>
<th>Ability to Detect mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europ. Cauc</td>
<td>1/3000</td>
<td>1/29</td>
<td>80%</td>
</tr>
<tr>
<td>Ash. Jewish</td>
<td>1/3000</td>
<td>1/29</td>
<td>97%</td>
</tr>
<tr>
<td>Hispanic Am</td>
<td>1/9200</td>
<td>1/46</td>
<td>57%</td>
</tr>
<tr>
<td>African Am</td>
<td>1/15,000</td>
<td>1/65</td>
<td>69%</td>
</tr>
<tr>
<td>Asian Am</td>
<td>No data</td>
<td>1/90</td>
<td>unknown</td>
</tr>
</tbody>
</table>
Meconium Ileus

Carrier Mom — Carrier Dad

Eggs — Sperm

Baby with CF — Normal carrier — Normal carrier — Normal non-carrier
Genetics of CF

- Most common mutation
 - Occurs in 70% of CF chromosomes
 - 3 base pair deletion leading to absence of phenylalanine at position 508 ΔF508 of the CF Transmembrane conductance Regulator-CFTR

- Large number >1000 of relatively uncommon mutations ~2%
Genetics of CF

- Native Americans have the second highest incidence rates of cystic fibrosis
- One in 10,500 Native Americans has cystic fibrosis
- Compared with one in 3,200 Whites
- The delta-F508 mutation has not been found in any American Indian cystic fibrosis patient.
- According to the American Society of Human Genetics, genetic tests can detect about 94 percent of those mutations found in American Indians
- Recent surveys conducted on specific American Indian populations found even higher incidences: one in 3,970 in the Pueblo Indian people and one in 1,580 among the Zuni Indians.

Cystic Fibrosis Foundation. Facts about Cystic Fibrosis. 2003 May
Genetics of CF

- The CFTR protein - Cystic fibrosis Transmembrane conductance Regulator
 - Single polypeptide chain, 1480 amino acids
 - Cyclic AMP regulated chloride channel
 - Regulator of other ion channels
 - Found in the plasma membrane of normal epithelial cells
Mutations in *CFTR*- Cystic Fibrosis Transmembrane conductance Regulator, located on chromosome 7p31.2

CFTR is a chloride ion transporter that binds ATP and hydrolyzes it for energy to transport Cl-
CF-Mutation of CFTR

Functional in apical plasma membrane

1. Does not reach apical plasma membrane

2. Does not function normally at apical plasma membrane

Normal cell

Cystic fibrosis cell
CF-Pathophysiology - Primary defect

Decreased chloride ion export

- Absence of cAMP-dependent kinase and PKC-regulated chloride transport
- Increased sodium ion absorbance
- Insufficient hydration of epithelial surfaces: lungs, pancreas, sweat glands, etc; sticky mucus on epithelium that can’t be cleared by cilia
- Bacteria such as *S. aureus* and *Pseudomonas aeruginosa* colonize the lungs
Meconium Ileus

- **Normal airway epithelia**

- **CF altered airway epithelia**
CF-Vicious Cycle: Obstruction, Infection, and Inflammation
Multiorgan System Manifestations of CF

- Secondary biliary cirrhosis
- 5% have liver dysfunction as bile ducts obstruct
- Malabsorption
- Meconium ileus in newborns
- Obstructed vas deferens - 95% male sterility
- Cervical plugs may affect female fertility
- Rectal prolapse
- Lung abscess
- Chronic bronchitis
- Bronchiectasis
- Honeycomb lung
- Pneumothorax
- Hemoptysis
- Cor pulmonale
- 65% obstruction blocks digestive enzymes – may cause diabetes
- Chronic pancreatitis
- Abnormal sweat electrolytes

Rhinosinusitis
Nasal polyposis

Abnormal sweat electrolytes
CF-Manifestations

- Common presentations
 - Meconium ileus
 - Failure to thrive
 - Chronic cough
 - Recurrent pulmonary infiltrates
CF-Manifestations

- **Respiratory tract**
 - **Chronic sinusitis**
 - Nasal obstruction
 - Rhinorrhea
 - Nasal polyps in 25%; often requires surgery
 - **Chronic cough**
 - Persistent
 - Viscous, purulent, green sputum
CF-Manifestations

- **Respiratory tract**
 - **Lung function**
 - Small airway disease is first functional lung abnormality
 - Progresses to reversible as well as irreversible changes in FEV1
 - Chest x-ray may show hyperinflation, mucus impaction, bronchial cuffing, bronchiectasis
CF-Manifestations

- Respiratory tract
 - Complications
 - Pneumothorax
 ~10% of CF patients
 - Hemoptysis
 - Digital clubbing
 - Cor pulmonale
 - Respiratory failure
CF-Manifestations

- **Genitourinary**
 - Late onset puberty
 - Due to chronic lung disease and inadequate nutrition
 - >95% of male patients with CF have azospermia due to obliteration of the vas deferens
 - 20% of female patients with CF are infertile
 - nevertheless >90% of completed pregnancies produce viable infants
Gastrointestinal

- Exocrine pancreatic insufficiency
 - Found in >90% of CF patients
 - Protein and fat malabsorption
 - Frequent bulky, foul-smelling stools
 - Vitamin A, D, E, K malabsorption
 - Sparing of pancreatic beta cells
 - Beta cell function decreases with age

- Increased incidence of GI malignancy
CF-Diagnosis

Hx. Family CF

Genetic testing

Meconium ileus

IRT test for trypsinogen

Sweat chloride

Hx. Resp infection

Hx. Pancreatic insufficiency
CF-Diagnosis

Criteria

- One of the following
 - Presence of typical clinical features
 - History of CF in a sibling
 - Positive newborn screening test

- Plus laboratory evidence for CFTR dysfunction
 - Two elevated sweat chloride concentrations on two separate days
 - Identification of two CF mutations
 - Abnormal nasal potential difference measurement
The sweat test measures the level of chloride in the sweat using a small electric current.
Pilocarpine increases sweating+ Mild electric current.
The sweat is collected on a gauze for 30 minutes, then weighed in a weighing jar.
Chloride >60 mEq/L - Cystic Fibrosis
Surgical considerations in CF

- Jejunoileal atresia
- Meconium ileus
- Intussusception
- Fibrosing colonopathy
- Inguinal hernias
- Bronchiectasis
- Pneumothorax
- Hepatobiliary and pancreatic disease
- Rectal prolapse

Meconium Ileus

- MI is a unique form of congenital intestinal obstruction in which the meconium of the fetus forms concretions in the distal ileum that completely occlude the bowel lumen.
- MI is the first clinical manifestation of CF.
- Only 6% to 20% show the obstructive syndrome.
- MI is considered pathognomonic for CF.
- Although MI may occur with pancreatic aplasia and total colonic aganglionosis.

Meconium Ileus

- The meconium is extremely viscid, leading to an intraluminal obturator-type obstruction of the terminal ileum.
- 50% neonates present with a simple uncomplicated obturation obstruction.
- The remaining 50% present with complications.

Meconium Ileus

Meconium Ileus- Uncomplicated

- Terminal ileum is filled with firm concretions.
- Bowel in this area is small in diameter and molded around the inspissated lumps of meconium.
- Proximally, the ileum becomes dilated and filled with thick sticky meconium with gas and fluid found within the small bowel above this area.

Meconium Ileus

Meconium Plug
Meconium Ileus

Meconium Ileus - Complications

- Volvulus
- Gangrene
- Atresia
- Perforation
- GCMP- Giant Cystic Meconium Peritonitis

Meconium Ileus
Meconium Ileus-Presentation

- Meconium ileus and peritonitis may be detected on prenatal ultrasound in up to 19%

- More commonly presented in the neonatal period with:
 - abdominal distension
 - bilious vomiting
 - failure to pass meconium

Abdominal radiographs in simple MI

Dilated small bowel often without air-fluid levels

Viscosity of the meconium does not allow an air interface with the fluid.

Meconium Ileus

Abdominal Radiographs in Simple Meconium Ileus

Soap-bubble appearance - Neuhauser's sign as a result of meconium mixing with swallowed air.

Highly suggestive but not pathognomonic of CF

Abdominal XR

High intestinal obstruction, possible pneumatosis and intraperitoneal free air. Worrisome for NEC.
Barium Enema:
1. shows an unused colon; microcolon
2. inspissated meconium pellets within the terminal ileum
3. locates the cecal position indicating whether malrotation is present

The last part of the small intestine has dried out “pebbles” of meconium (stool surrounded by contrast dye, arrow) in the newborn with meconium ileus.
Findings in Complicated MI

- Peritoneal calcifications
- Mass effect
- Air-fluid levels related to atresia

CF-Pathology
Treatment of MI

- A hypertonic enema-Gastrografin was introduced by Noblett in 1956.
- Hypertonic enema washout is now the procedure of choice for simple MI.
- Gastrografin 25%-50% dilution is infused into the rectum under fluoroscopic control.
- Passage of meconium pellets followed by semiliquid meconium occurs over the next 24 to 48 hours.

Treatment of MI

Meconium Ileus
Treatment of Meconium Ileus

- On occasion, a repeat hypertonic enema-Gastrografin may be required.
- After 2 failed attempts at nonoperative hyperosmolar washout, operative intervention is indicated.
- Complications:
 - bowel perforation
 - hypotension
 - necrotizing enterocolitis

Operative Intervention

- Enterotomy and intraoperative saline irrigation initially for mechanical separation of the pellets from the bowel wall and evacuation of the meconium.
- Purse-string suture is placed in the antimesenteric wall of the bowel and a red rubber catheter is inserted through a small incision within the purse-string.

Operative Intervention

- Gentle instillation of diluted hypertonic enema Gastrografin into the proximal bowel and terminal ileum to avoid bowel perforation.
- Meconium is removed through the enterotomy, and the pellets either are removed or flushed distally into the colon.
- At the conclusion of the procedure the enterotomy is closed.

Operative Intervention

- Hypertonic enema - Gastrografin is contraindicated in complicated MI, which always managed operatively.

- In cases of atresia without compromised bowel procedure of choice is resection of the dilated atretic segment, distal irrigation, and primary anastomosis.

Operative Intervention

- In cases of perforation, volvulus or GCMP-Giant Cystic Meconium Peritonitis
 - Resection and temporary enterostomy are preferred

The operative mortality/survival rate

- The mortality rate for MI and peritonitis was approximately 55% in the 1960s and 1970s.
- The survival rate for patients with simple MI is 93%.
- Complicated MI is 89%.
- A multidisciplinary approach to the management of the operative patient with CF including respiratory care, nutrition support, and pancreatic enzyme therapy allows for a low operative morbidity and mortality.

Summary

- CF is an inherited, monogenic disorder presenting as a multisystem disease.
- Pathophysiology is related to abnormal ion transportation across epithelia.
- Respiratory, GI and GU manifestations.
- Treatment is currently preventative and supportive.
Question#1

- Abdominal XR in newborn reveals “double-bubble” sign, which of the following conditions it can be seen?
 - A-Meconium ileus
 - B-Duodenal atresia
 - C-Normal newborn right after delivery
 - D-Malrotation of the midgut
 - E-Annular pancreas

Answer: B,C,D,E
Question#2

A newborn develop progressive abdominal distention and bilious vomiting. Abdominal XR reveals distended bowel loops of varying size with air-fluid levels and “soap suds” appearance in the right lower quadrant. Which of the following procedures should be performed next?

- A-Gastrografin enema
- B-Gastrografin upper GI radiography
- C-Sweat chloride test
- D-Paracentesis
- E-Laparotomy

Answer: A
Question #3

Which of the following is/are Meconium Ileus complications?

- A-Volvulus
- B-Gangrene
- C-Atresia
- D-Perforation
- E-GCMP

Answer: A, B, C, D, E
Question #4

- What percentage of patients with Meconium ileus show the obstructive syndrome
 - A-95-100%
 - B-50-60%
 - C-6-20%
 - D-12-35%
 - E-35-65%

Answer: C